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A numerical method that analyzes the topology of the Laplacian of the electronic density regardless of how
it was obtained (analytically, numerically, or even experimentally) was implemented for the BUBBLE program.
The method allows the study of a complex system where the electronic correlation is important, by density
functional theory regardless the kind of basis set used, and allows the analysis of the Laplacian of the resulting
charge density with the topological theory of Bader. The method was applied to CO and NO molecules and
the Cu13, Cu45, and Fe21 clusters modeling the (100) Cu and (001) Fe surfaces, respectively.

Introduction

Density functional theory (DFT) plays a role of increasing
importance in the calculations of ground states of molecules
and solids.1-9 The inclusion of the electron correlation effects
is necessary for an accurate description of many electron
systems.2 By standard methods, such as configuration interac-
tion, perturbation or the Green function theory, the inclusion
of the electron correlation for an extended system is a very
difficult matter.2 However, this problem is overcome with the
appearance of DFT, in which the correlation is included by
introducing a local (or nonlocal) approximation for a functional
of the electronic density that describes the correlation effects.
The practical implementations of DFT lead to the Kohn and
Sham (KS) equations.2 Their solution has no more numerical
difficulties than the Hartree equations. This allows us to handle
complex systems such as solids, surfaces, interfaces, transition
metals, and organometallic compounds.6,8 Additionally, the
DFT methods are not restricted to traditional Gaussian basis
set functions6 since it is possible to use different sets such as
muffin tin orbitals, multiple scattering, plane waves, or numer-
ical functions.
The topological theory of Bader is very useful to extract the

chemical information from the charge density.10-30 The reactiv-
ity of molecules is reflected in the topology of the Laplacian of
the charge density32F.20-23 The Laplacian of any scalar field,
such asF(r ), determines where the field is locally concentrated
(32F < 0) and locally depleted (32F > 0).10 Since electron
density is concentrated where32F < 0, the topology of the
Laplacian is conveniently given in terms of-32F. The atomic
Laplacian24,25exhibits alternating shells of charge concentration
and charge depletion equal in number to the number of quantum
shells. The outer valence shell of charge concentrations (VSCC)
contains a spherical surface over whichF(r ) is maximally
concentrated. The distribution of the-32F over this surface
in the free atom is uniform if one assumes that the nucleus has
a negligible electric quadrupole moment. In general, this surface
persists when the atom is in chemical combination but the
surface is no longer spherical and has no longer a uniform
concentration. The formation of bonds produces changes in
this distribution, and a number of local maxima, minima, and
saddles appear in this surface of charge distribution.22 The
localized concentrations of charge mimic in number, relative
position, and size the pairs of electrons assumed in the Lewis
model, topological features that are absent from the relatively
simple topology exhibited by the density itself. The structure

of the VSCC for an atom in a molecule,22,23 called its atomic
graph, is most easily visualized in terms of the polyhedron
defined by the maxima in-32F, a polyhedron whose vertices
(V), edges (E), and faces (F) satisfy Euler’s formula:

The maxima define the vertices,V, the unique pairs of3(32F)
trajectories that originate at (3,-1) critical points and terminate
at neighboring vertices define the edges,E, and the (3,+1)
critical points define the faces,F. The face critical points define
the centers of local depletions in the valence shell charge
concentration. A Lewis acid-base reaction corresponds to
aligning a charge concentration (CC) of the VSCC on the base
with a charge depletion (CD) on the acid, that is, by directing
a vertex of the graph on the base atom at a face of the
polyhedron on the acid. This is a general phenomenon that is
observed in many different kinds of interactions,10 examples
being the formation of hydrogen bonds,26 the alignment of
chlorine molecules in the solid,16 and the adsorption of
molecules on surface.27-30 The Laplacian of the electronic
density provides a physical model that guides us in the
determination of the sites of adsorption, the geometry of
approach of the reactant relative to the surface site, and predicts
whether the interaction will correspond to physi- or chemisorp-
tion.27 A recent study,30 using molecular orbital Hartree-Fock,
post-Hartree-Fock at MP2 and QCISD levels and DFT calcula-
tions has confirmed that the DFT methods provide a good
description of the topology of Laplacian of the electronic density.
Unfortunately, the available algorithms for the toplogical
analysis of32F (BUBBLE,31GAUSSIAN32,3394, MORPHY,34
and TOPOND35 program in CRYSTAL36 95) have been only
implemented for analytical Gaussian basis sets. This limits the
applicability of the Laplacian topology in many interesting
systems in which the correlation effects play an important role.
Due to the existence of a large variety of software employing
different basis set and the unavailability of the source code in
commercial cases, in the present work, a numerical method was
developed that is able to analyze the topology of the Laplacian
of the electronic density regardless of howF(r ) was generated
(analytically, numerically, or even experimentally). The method
allows one to study complex systems by DFT and analyze the
resulting density with the topological theory of Bader. In the
present study, this method was implemented as a modification
to the BUBBLE31program and applied to CO and NOmolecules
plus some Cu and Fe clusters. It would be equally simple to
adapt the method to other available programs.X Abstract published inAdVance ACS Abstracts,February 1, 1997.
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Theory

The properties of a scalar field such as-32F are summarized
in terms of its critical points (CP).10 These are points where
the gradient vector field,3(-32F), vanishes and are classified
by the-32F(r ) curvatures or three eigenvaluesλi (i ) 1, 2,
and 3) of the Hessian matrix (Hij ) ∂232F/∂xi∂xj). There are,22

in the surface of the VSCC, three types of these extremes that
labeled by their rank (number of nonzero eigenvalues) and
signature (excess number of positive over negative eigenvalue)
are (3,-3), (3, +1), and (3,-1). The curvature22 of -32F
normal to this surface, the radial curvature, is negative while
the two tangential curvatures can assume either positive or
negative values. If both of those curvatures are negative or

positive then a local maximum, a (3,-3) CP, or local minimum,
a (3,+1) CP, is formed on that surface, respectively. When
one of the tangential curvatures is negative and the other positive
a saddle, a (3,-1) CP will be formed. Each maximum22 is
linked to the another one by unique pairs of trajectories of the
gradient of-32F which originate at the saddle points. The
network of those trajectories partitions the surface of charge
concentration in segments with curved faces. In the center of
each face there is a local minimum in the surface of the VSCC.
This structure is called an atomic graph22 and succinctly
summarizes the type and number of the CPs formed on the
surface of charge concentration of an atom in a molecule. This
graph provides the connectivity of the extremes of the-32F in

Figure 1. (a, top left) Zero envelope of the Laplacian of the charge density for methane. This envelope separates the regions of charge concentrations
from those of charge depletion. Note the presence of the pronounced holes at the position of the carbon atom. These holes correspond to the (3,
+1) critical points. (b, top right) Three-dimensional cross section showing the structure of the methane VSCC. Green and white spheres denote
the position of the carbon and hydrogen nucleus, respectively. Red, pink, orange, sky blue and purple surfaces correspond to contour values of 0.1,
0.5, 0.8, 1.5, and 2.0 au, respectively. Yellow and blue spheres mark the (3,-3) critical points or local charge concentration and (3,-1) saddles
points, respectively. (c, bottom left) Contour plot of-32F in a plane containing the carbon and two hydrogen nuclei. The contour (red lines)
values in au are 0.1, 0.5, 0.8, 1.5, and 2.0. The outermost contour in each plot is 0.1. The (3,-3) critical points are denoted by yellow spheres
while the (3,-1) ones are denoted by blue spheres. The arrows point out the (3,+1) critical points at the graph faces. (d, bottom right) Atomic
graph for the carbon atom, a tetrahedron with four curved faces. There is a (3,-3) critical point in-32F, at each vertex denoted by a yellow
sphere, and a (3,-1) critical point defining each edge indicate by a blue sphere.
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the corresponding surface of charge concentration of the VSCC
distribution. In the C atom of the methane molecule (Figure
1), for example, the VSCC exhibits four local charge concentra-
tions or (3,-3) CPs, each one lying along the C-H bonds,
linked by six (3,-1) CPs defining four faces with one (3,+1)
CP in the center of each face. Thus, the atomic graph for that
atom is a regular tetrahedron with four triangular curved faces
(Figure 1d). The values of the-32F at the (3,-3), (3,-1),
and (3,+1) are 1.190, 0.234, and-0.119 au, and the distances
from the nucleus are 0.982, 0.968, and 1.003 au, respectively.
As we can see, the charge distribution on the VSCC shows large
changes while the distances from the nucleus only show slight
differences. In general, the surface of charge concentration is
almost spherical and the value of its radius is characteristic of
the nature of the atom. The number, type, location, and-32F
value of the critical points on that surface are a function of the
linked atoms.

Methodology
BUBBLE determines the critical points of-32F based on

the Newton-Raphson (NR) technique.37 The NR algorithm
starts from a truncated Taylor expansion at a pointr ) r0 + h,
aboutr0 of a multidimensional scalar function,

where-32F is the Laplacian of the electron density andg and
H are its gradient and Hessian (matrix) at pointr0, respectively.
The best NR steph to get from the initialr0 to the critical point
is h ) -H-1g. This correction is then used to obtain the new
starting pointrnew, and the process is iterated to3(-32F) ) 0.
The NR algorithm requires the evaluation of the first, second,
third, and fourth partial derivatives ofF at arbitrary pointsr .
The BUBBLE program evaluates these derivatives analytically,
using a Gaussian basis representation for the electronic density.
In the present work, we representedF on to a homogeneous

grid of interval sizeh and use standard numerical methods37 to
calculate the partial derivatives ofF, which are then used in
the NR algorithm. Our methodology consists of performing
all calculations on an uniform grid of the electronic density. In

a simple approach, we have used finite difference approxima-
tions to the partial derivatives for equally spaced base points.
In this method the derivative expressions are developed as a
linear combination of its functional values. For example, the
forward first derivative approximation of af(x) function at the
xi point usiong a fourth-order polynomial is evaluated by
expanding the Taylor series about pointsxi, xi+1, xi+2, xi+3, and
xi+4. Thus,

where h is the separation step between the points. Iff ′ is
truncated at the third derivative, the error can be assumed to be
of orderh2 and is represented by (O)h2. Thereforef ′ is given
as

This expression can be simplified in the so called “stencil”
form37 considering only the significant features such as the
direction, functional values, coefficients, and order of error.
Thus, the eq 2 in the stencil representation is expressed as,

Such expressions include only the coefficients of the functional
values present in the derivative formulas. The double circles
indicate the position of the base point where the derivative is
being evaluated, and the adjacent circles are separated by the
intervalh.
In this work, we have developed derivative expressions with

eighth-order error (O(h8)) and backward, forward, and central
interpolation. For example, using the stencil form, the ap-
proximation formulas developed for the case of central inter-
polation, to determine the noncrossed first, second, third, and
fourth derivatives ofF and the mixed partial derivative, such
as∂4F/∂2x∂2y (due to the expression involving an error of O(h8),
it is just too large (an 11× 11 matrix), we have chosen one
with an error ofO(h4) as illustrative), are

-32F ) -32F0 + gTh + (1/2)h
THh (1)

f ′(xi) ) (1/2h)[-3f(xi) + 4f(xi + 1)- f(xi + 2)] +

(h2/3)f′′′(xi) + (h3/4)fiv(xi) (2)

f ′(xi) ) (1/2h)[-3f(xi) + 4f(xi + 1)- f(xi + 2)] + O(h2) (3)

f  = (1/2h) –3 4 –1 + O(h2) (4)′
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whereω andâ are the coordinates x, y, or z.

The additional computational load of the proposed method
was found to be not greater than that of preparing a grid-based
plot. However, this load can be significantly longer than that
required by the analytical approaches. Once that grid is built,
one needs to calculate the derivatives ofF at thesamenumber
of arbitrary pointsr i in both methods. In order to to carry out
the topological analysis within an atomic VSCC, the BUBBLE
program samples angular, azimuthal, and radially in a spherical
shell of radius varying fromRi to Rf around the shell
characteristic atomic radiusR. In general, around 1400 points
(ni ) 14 (angular points)× 10 (θ points)× 10 (radius points))
are enough for an exhaustive topological analysis with this
program. The analytical method calculates the values of the
derivatives only at ther i points using the basis functions while
the numerical one instead has to use equations such as 5-9.
Such equations involveseVeral points around eachr i, and the
program has to interpolate when the points are not on the grid.
The additional number of points required by the numerical
approach is given by [(4/3)π(Rf3 - Ri3)/h3] - ni. For example,

in a N atom, whereRi andRf can be 0.74 and 0.86, respectively,
the additional number of points needed are 34 411 whenh )
0.03 or 119 463 whenh ) 0.02.

Figure 2. Laplacian distribution for (a) carbon monoxide and (b) nitrogen monoxide. Only contours for-32F, that is, concentration of electronic
charge are plotted. The contour values in au are 0.1, 1.0, 2.0, 3.0, and 4.0. The outermost contour in each plot is 0.1. The (3,-3) critical points
or local charge concentrations are denoted by white spheres in the middle of the lobes. In panel b there is also (3,-1) CPs located at the leftmost
hexagon at 2, 4, and 9 o’clock, and in the rightmost hexagon at 3, 8, and 11 o’clock.

TABLE 1: Data for -32G(r) at the (3, -3) Critical Points
in the Atomic Valence Shell of the CO Molecule

O atom

bonded nonbonded

step -32F rO -32F rO

analytic 4.477 105 49 0.691 728 87 4.746 419 80 0.641 029 94
0.04 4.477 131 87 0.691 710 16 4.746 493 54 0.641 013 70
0.03 4.477 108 72 0.691 727 06 4.746 424 76 0.641 028 02
0.02 4.477 105 72 0.691 728 98 4.746 420 27 0.641 029 89

C atom

nonbonded

step -32F rC

analytic 1.259 823 60 0.857 275 40
0.04 1.259 824 59 0.857 274 78
0.03 1.259 823 72 0.857 275 40
0.02 1.259 823 11 0.857 275 50
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Results and Discussion

The accuracy of the numerical evaluation of the topological
properties of the-32F at the critical points with the modified
version of BUBBLE (called NUMLAP) was tested by compar-
ing the results of Gaussian 94 analytic KSOs using the original
BUBBLE program and the results using a numerical grid ofF,
calculated with the CUBEV program of the AIMPAC 94
package.31 CUBEV builds a homogeneous grid ofF of step
size h. The analytical KS orbitals were calculated using the
gradient-corrected Becke exchange potential38 together with the
correlation potential of Lee, Yang, and Parr39 (BLYP) and the
6-311G** Gaussian basis set.40 An error of order ofh8 is
expected for the partial derivatives associated with the difference
approximation used. However, the error also depends on the
number of figures used in the storage of the density. This is

an important point because in most of the software currently
used, the density is stored only for plotting purposes, with 3-7
significant figures (FN).
To study the effect of the size ofh and FN of F on the

localization and the-32F value at the critical points of the
Laplacian, we have determined the atomic graphs in CO and
NO molecules using different values ofh and FN onF. The
results showed that a value ofh between 0.04 and 0.02 with a
FN value between 7 and 12, guarantees a precision from 4 to 6
FN in the topological analysis of-32F. The distance from the
nucleus to the CPs and the-32F value at the CPs of the VSCC
of the C, O, and N atoms of the CO and NO molecules for
selectedh values and FN equal to 12 are reported in Tables 1
and 2, respectively. Contour maps forh ) 0.02 are shown in
Figure 2. In CO, the carbon atom exhibits only one local charge
concentration or (3,-3) type CP, (Vnb), which is located in
the nonbonded region. A torus of charge depletion around the
internuclear axis with a ring of degenerated points is found in
the C VSCC. The O VSCC distribution shows two local charge
concentrations located along the C-O bond direction. One is
facing the carbon atom (Vb), while the other is found in the
opposite side of the shell forming a nonbonded charge concen-
tration (Vnb). The ground state of NO (2π) has the open shell
configuration (1σ)2(2σ)2(3σ)2(4σ)2(5σ)2(1π)4(2π) so that the
extra electron in the 2π molecular orbital, that is mostly localized
in a plane, destroys the axial symmetry. In NO, both the N
and O VSCC show three local maxima, two nonbonded forming
an angle of 120° with the bond direction and one located in the
bond region. Three (3,-1) critical points lie on the same plane
of the (3,-3) forming two faces, one above and the other below
the plane, with two (3,+1) capping the atomic graph. Tables
1 and 2 confirm that a value ofh around 0.03 and a FN of 12
in F produces a good precision (around 10-6) in the localization
of and in the topological properties at the critical points of-32F.
To consider a more complex case, we have studied the Cu13

cluster. This a model of the (100) Cu surface with the
geometrical parameters of the bulk. Cu unit cell is a cubic41

fcc and belongs to theFm3m space group witha ) 3.577 Å.
Experimental studies42 have shown that the (100) Cu surface
reconstructs only to a small extent so that the geometry of the
first and second layer is essentially unchanged from the bulk
one. Previous results30 have shown that the atomic graph for
the central Cu atom (modeling the Cu of the surface) has six
vertices, two along the axis perpendicular to the surface, one
above (Lu) and other below the surface (Ld), and four (Li with
i ) 1, ..., 4) in the plane along the Cu-Cu bonds. These CPs
are linked by twelve edges, four between the Lu and Li, four
between Ld and Li, and four linking the Lis. Thus, the atomic
graph (Figure 3) of the Cu atoms is an octahedron with eight
faces joining the vertices, four above the surfaces and four below
it. The distance nucleus CPs and the-32F value at these critical
points forh ) 0.04 are collected in Table 3. This table shows
that, even in this complex case, a value ofh around 0.03 offers
a good compromise between computational cost and numerical
precision (from 10-4 to 10-6) in the determination of the atomic
graphs and the calculation of the-32F value at its critical points.
The previous results show that NUMLAP can be applied with

confidence to any numerical density regardless of the method
employed in the determination ofF. As an example of its
capabilities, we will apply it to carry out the topological analysis
of the Laplacian of an electronic density determined using an
atomic numerical basis set. In this application, we will study
the atomic graph of the Cu and Fe atoms on the (100) Cu and
(001) Fe surfaces using the DMOL43 program (h ) 0.03 and
FN ) 10) to generateF. The KS numerical orbitals were
calculated with the BLYP functional and a double-numerical

TABLE 2: Data for -32G(r) at the Critical Points in the
Atomic Valence Shell of the NO Molecule

N atom

(3,-3)

nonbonded, V1 and V2 Vbonded

step -32F rN -32F rN

analytic 2.518 458 89 0.742 211 85 1.869 794 60 0.835 319 97
0.04 2.518 459 56 0.742 209 05 1.869 802 12 0.835 326 05
0.03 2.518 458 95 0.742 211 45 1.869 794 75 0.835 324 06
0.02 2.518 458 91 0.742 211 83 1.869 794 50 0.835 320 89

(3,-1)

bonded, E1 and E2 Enonbonded

step -32F rN -32F rN

analytic 0.976 695 85 0.794 687 25 2.100 135 26 0.743 188 21
0.04 0.976 696 11 0.794 689 43 2.100 144 63 0.743 257 94
0.03 0.976 695 87 0.794 687 65 2.100 136 53 0.743 200 09
0.02 0.976 695 84 0.794 687 29 2.100 134 76 0.743 189 21

(3,+1)

F1, F2

step -32F rN

analytic 0.100 042 38 0.862 741 66
0.04 0.100 041 80 0.862 739 37
0.03 0.100 042 42 0.862 740 97
0.02 0.100 042 08 0.862 741 27

O atom

(3,-3)

nonbonded, V1 and V2 Vbonded

step -32F rO -32F rO

analytic 5.097 113 79 0.642 765 14 3.236 256 29 0.714 323 03
0.04 5.097 117 93 0.642 776 66 3.236 274 98 0.714 379 53
0.03 5.097 113 97 0.642 765 25 3.236 258 00 0.714 321 58
0.02 5.097 113 46 0.642 765 14 3.236 257 35 0.714 323 01

(3,-1)

bonded, E1 and E2 Enonbonded

step -32F rO -32F rO

analytic 2.751 220 88 0.689 396 47 3.839 196 48 0.650 475 59
0.04 2.751 222 26 0.689 401 26 3.839 229 63 0.650 614 11
0.03 2.751 220 98 0.689 397 37 3.839 201 24 0.650 497 38
0.02 2.751 220 87 0.689 396 47 3.839 196 99 0.650 475 47

(3,+1)

F1, F2

step -32F rO

analytic 1.595 911 22 0.702 367 89
0.04 1.595 920 35 0.702 376 48
0.03 1.595 911 12 0.702 369 24
0.02 1.595 911 08 0.702 367 88
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basis set (DNP) including polarization.6 These are examples
of surfaces of fcc and bcc transition metals, respectively.
In bulk41 Cu, each atom has 12 nearest neighbors at 2.56 Å

that are reduced to eight at the top of the (100) surface. We
have studied this surface using cluster models containing from
two to four layers of Cu atoms parallel to the (100) plane. We
have determined, in each case, the critical points of the VSCC
of the surface top central atom. The Cu atomic graph is found
to exhibit no dependence on the slab depth, and a model
containing two layers is sufficient to give the right graph, an
octahedron similar to that showed in Figure 3. For that reason,
we have reported the results obtained in a Cu41 cluster (Figure
4) modeling a periodic slab of two layers. The distance nucleus
CPs and the-32F value at the critical points that generate the
regular octahedron previously mentioned and forming the atomic
graph are collected in Table 4.
The lattice of bulk41 Fe is cubic bcc and is described by the

Im3m space group witha ) 2.866 Å. Each Fe atom has eight
first nearest neighbors at 2.48 Å and six second nearest
neighbors at 2.87 Å. In the (001) surface top atom, these
interactions are reduced to four with its first neighbors (located
in the second layer) and five with the second ones (four in the
second layer and one in the third layer). Similarly, to the (100)
Cu case, experimental44,45 studies have shown that the (001)

Fe surface does not reconstruct, with a probable contraction of
1.4% in the first layer. Thus, we have studied this surface using
cluster models containing from two to four layers of Fe atoms
parallel to the (001) plane with the same geometrical parameters
of the bulk. As in the Cu case, the Fe atomic graph exhibits
no dependence on the slab depth so a two layer model gives
the right graph. The data for the critical points of-32F in the
VSCC of the top central Fe atom for a Fe25 cluster model (Figure
5a) are reported in Table 5. The atomic graph so defined is a
cube (Figure 5b) with eight vertices, four above and four below
the surface, linked by 12 edges and six faces joining those
vertices. Thus, the atomic graph of the Fe atom shows, with
respect the Cu one, dramatic changes. The magnitude of the
-32F at the CPs changes from around 60 au in Cu, a nearly
filled d-band case, to around 30 au in Fe, a nearly half-filled
d-band case. The atomic graph of the Cu atom exhibits a (3,
-3) CP type, a local maximum above the surface while Fe atom
exposes a (3,+1) CP, a local minimum in the VSCC.
Therefore, the VSCC of the Cu and Fe atoms expose, above
the surface, a “peak” and a “hole” of charge, respectively. These
drastic variations in the Laplacian distribution are closely related
to the opposite reactivity behavior shown by the Cu and Fe
surfaces toward a molecule such as CO. It is known that the
CO molecule does not remain46 on the Cu surface at room
temperature while it is dissociatively absorbed47 on Fe surface.
The perpendicular bonding of the CO molecule through the C
atom on the surface of Cu would require that a vertex on CO
interacts with a vertex (a repulsive interaction) on the surface.
The bonding on Fe corresponds to a vertex (adsorbate)-face
(surface) interaction, an attractive interaction.

Figure 3. Atomic graph for top atoms in Cu (100) surface. Large
gray and small white spheres denote the vertex ((3,-3) CPs) and the
edges ((3,-1) CPs), respectively. The graph exposes a vertex
perpendicular to the top of the surface.

TABLE 3: Data for Critical Points in the Laplacian of G(r)
in the Central Top Cu Atom on the Cu13 Cluster

critical points -32F rCu

one (3,-3) above surface 60.987 709 77 0.543 557 57
60.987 694 33 0.543 558 03

one (3,-3) below surface 60.945 407 78 0.543 682 68
60.945 406 11 0.543 683 11

four (3,-3) in surface 61.252 429 88 0.543 458 69
61.252 430 43 0.543 458 64

four (3,-1) above surface 57.799 769 06 0.545 378 34
57.799 770 55 0.543 378 33

four (3,-1) in surface 58.603 741 29 0.544 958 70
58.603 748 62 0.544 959 14

four (3,-1) below surface 57.203 703 96 0.545 817 76
57.203 703 65 0.545 817 75

four (3,+1) above surface 56.992 454 61 0.545 849 32
56.992 455 56 0.545 849 32

four (3,+1) below surface 56.494 608 92 0.546 217 20
56.494 605 22 0.546 217 17

a In each line, the first and second rows give the BUBBLE and
NUMLAP results, respectively.

Figure 4. Cu41 cluster modeling a slab of two layers of the (100) Cu
surface. Gray and white spheres denote a Cu atom on the first and
second layer, respectively.

TABLE 4: Data for Critical Points of the Laplacian of G(r)
in the Central Top Cu Atom of the Cu41

critical points -32F rCu

one (3,-3) above surface 63.5515 0.5325
one (3,-3) below surface 65.2372 0.5315
four (3,-3) in surface 64.0215 0.5321
four (3,-1) above surface 58.9510 0.5345
four (3,-1) in surface 61.9747 0.5330
four (3,-1) below surface 59.4690 0.5341
four (3,+1) above surface 58.4289 0.5347
four (3,+1) below surface 58.821 0.5344

TABLE 5: Data for Critical Points of the Laplacian of G(r)
in the Central Top Fe Atom of the Fe21 Cluster

critial points -32F rFe

four (3,-3) above surface 30.2286 0.6017
four (3,-3) below surface 30.0282 0.6285
four (3,-1) above surface 28.9801 0.5988
four (3,-1) in surface 29.3331 0.6167
four (3,-1) below surface 28.5089 0.6345
one (3,+1) above surface 26.4221 0.5950
four (3,+1) in surface 25.2640 0.6210
one (3,+1) below surface 25.1176 0.6555
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Conclusions

A numerical method to perform the topological analysis of
the Laplacian ofF(r ) regardless of how it was generated
(analytically, numerically, or even experimentally) was imple-
mented for the BUBBLE program. The method allows, for
example, the study by DFT by complex systems where the
electronic correlation is important, regardless the kind of basis
set used, and allows to predicts the chemical reactivity with
the atomic graphs of the topological theory of Bader. It would
be equally simple to adapt this method to other available
programs, such as the MORPHY program.
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Figure 5. (a) Fe21 cluster modeling a slab of two layers of the (001)
Fe surface. Gray and white spheres denote Fe atom on the first and
second layer, respectively. (b) Atomic graph for top atoms in Fe (001)
surface. Large gray and small white spheres denote the vertex and the
edges, respectively. The graph exposes a face perpendicular to the
top of the surface. The lines indicate the bond direction with the atoms
of the second layer of the surface.
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