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A numerical method that analyzes the topology of the Laplacian of the electronic density regardless of how
it was obtained (analytically, numerically, or even experimentally) was implemented for the BUBBLE program.
The method allows the study of a complex system where the electronic correlation is important, by density
functional theory regardless the kind of basis set used, and allows the analysis of the Laplacian of the resulting
charge density with the topological theory of Bader. The method was applied to CO and NO molecules and
the Cus, Cuws, and Fe; clusters modeling the (100) Cu and (001) Fe surfaces, respectively.

Introduction of the VSCC for an atom in a molecwlé23 called its atomic

. . . . graph, is most easily visualized in terms of the polyhedron
Density functional theory (DFT) plays a role of increasing defined by the maxima ir-v2p, a polyhedron whose vertices

importance in the calculations of ground states of molecules edaes E). and facesH) satisfy Euler’s formula:
and solids.™® The inclusion of the electron correlation effects (V). edges ), i bt '

is necessary for an accurate description of many electron V—E+E=2
systemg. By standard methods, such as configuration interac-
tion, perturbation or the Green function theory, the inclusion
of the electron correlation for an extended system is a very
difficult matter? However, this problem is overcome with the
appearance of DFT, in which the correlation is included by " . . ! i - :
introducing a local (or nonlocal) approximation for a functional critical points define the faces, Th.e face critical points define

of the electronic density that describes the correlation effects.the center; of local d_epletl_ons in the \_/alence shell charge
The practical implementations of DFT lead to the Kohn and ¢oncentration. A Lewis acidbase reaction corresponds to
Sham (KS) equatior’. Their solution has no more numerical aligning a charge concentration (CC) of the VSCC on the base
difficulties than the Hartree equations. This allows us to handle With @ charge depletion (CD) on the acid, that is, by directing
complex systems such as solids, surfaces, interfaces, transitiord Vertex of the graph on the base atom at a face of the
metals, and organometallic compourids.Additionally, the polyhedron on the acid. This is a general phenomenon that is
DFT methods are not restricted to traditional Gaussian basisOPserved in many different kinds of interactidfisexamples

set function® since it is possible to use different sets such as being the formation of hydrogen bonéfsthe alignment of

muffin tin orbitals, multiple scattering, plane waves, or numer- chlorine molecules in the soli, and the adsorption of
ical functions. molecules on surfacg=3® The Laplacian of the electronic

density provides a physical model that guides us in the

chemical information from the charge dendy® The reactiv- ~ determination of the sites of adsorption, the geometry of
ity of molecules is reflected in the topology of the Laplacian of approach of the reactant relative to the surface site, and predicts
the charge density20.20-23 The Laplacian of any scalar field, ~Whether the interaction will correspond to physi- or chemisorp-

such aso(r), determines where the field is locally concentrated tion?” A recent study? using molecular orbital Hartreg=ock,
(v% < 0) and locally depletedy?p > 0).1° Since electron post-Hartree-Fock at MP2 and QCISD levels and DFT calcula-

density is concentrated where?p < 0, the topology of the tions has confirmed that the DFT methods provide a good
Laplacian is conveniently given in terms ef’2. The atomic description of the topology of Laplacian of the electronic density.
Laplaciarf*25exhibits alternating shells of charge concentration Unfortunately, the available algorithms for the toplogical
and charge depletion equal in number to the number of quantumanalysis ofv?p (BUBBLE,* GAUSSIAN®23394, MORPHY?*
shells. The outer valence shell of charge concentrations (VSCC)and TOPONB?® program in CRYSTAES 95) have been only
contains a spherical surface over whiplr) is maximally implemented for analytical Gaussian basis sets. This limits the
concentrated. The distribution of thev?p over this surface  applicability of the Laplacian topology in many interesting
in the free atom is uniform if one assumes that the nucleus hassystems in which the correlation effects play an important role.
a negligible electric quadrupole moment. In general, this surface Due to the existence of a large variety of software employing
persists when the atom is in chemical combination but the different basis set and the unavailability of the source code in
surface is no longer spherical and has no longer a uniform commercial cases, in the present work, a numerical method was
concentration. The formation of bonds produces changes indeveloped that is able to analyze the topology of the Laplacian
this distribution, and a number of local maxima, minima, and of the electronic density regardless of hp(r) was generated
saddles appear in this surface of charge distribiiforThe (analytically, numerically, or even experimentally). The method
localized concentrations of charge mimic in number, relative allows one to study complex systems by DFT and analyze the
position, and size the pairs of electrons assumed in the Lewisresulting density with the topological theory of Bader. In the
model, topological features that are absent from the relatively present study, this method was implemented as a modification
simple topology exhibited by the density itself. The structure to the BUBBLE! program and applied to CO and NO molecules
plus some Cu and Fe clusters. It would be equally simple to
€ Abstract published irAdvance ACS Abstract&ebruary 1, 1997. adapt the method to other available programs.

The maxima define the vertice¥, the unique pairs of7(v2p)
trajectories that originate at (3;1) critical points and terminate
at neighboring vertices define the edgé&s,and the (3,+1)

The topological theory of Bader is very useful to extract the
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Figure 1. (a, top left) Zero envelope of the Laplacian of the charge density for methane. This envelope separates the regions of charge concentrations
from those of charge depletion. Note the presence of the pronounced holes at the position of the carbon atom. These holes correspond to the (3,
+1) critical points. (b, top right) Three-dimensional cross section showing the structure of the methane VSCC. Green and white spheres denote
the position of the carbon and hydrogen nucleus, respectively. Red, pink, orange, sky blue and purple surfaces correspond to contour values of 0.1,
0.5, 0.8, 1.5, and 2.0 au, respectively. Yellow and blue spheres mark th@)&ritical points or local charge concentration and-(3,) saddles

points, respectively. (c, bottom left) Contour plot ©f720 in a plane containing the carbon and two hydrogen nuclei. The contour (red lines)
values in au are 0.1, 0.5, 0.8, 1.5, and 2.0. The outermost contour in each plot is 0.1. F33 €8tical points are denoted by yellow spheres

while the (3,—1) ones are denoted by blue spheres. The arrows point out thelfJiritical points at the graph faces. (d, bottom right) Atomic

graph for the carbon atom, a tetrahedron with four curved faces. There is-&8)Jritical point in —v?p, at each vertex denoted by a yellow

sphere, and a (3;1) critical point defining each edge indicate by a blue sphere.

Theory positive then a local maximum, a (33) CP, or local minimum,
a (3,+1) CP, is formed on that surface, respectively. When

. ' ) .
The properties of a scalar field such-as*p are summarized one of the tangential curvatures is negative and the other positive

in terms of its critical points (CP¥ These are points where

the gradient vector fieldy(—v?p), vanishes and are classified a saddle, a (3;-1) CP will be fqrmed. _Each m_aximL_ﬂihis
by the —v2p(r) curvatures or three eigenvalugs(i = 1, 2, linked to the another one by unique pairs of trajectories of the

and 3) of the Hessian matriyl| = 32v2p/oxdx). There aré? gradient of —v2p which originate at the saddle points. The
in the surface of the VSCC, three types of these extremes that"€twork of those trajectories partitions the surface of charge
labeled by their rank (number of nonzero eigenvalues) and concentration in segments with curved faces. In the center of
signature (excess number of positive over negative eigenvalue)each face there is a local minimum in the surface of the VSCC.
are (3,—-3), (3, +1), and (3,—1). The curvatur® of —v2p This structure is called an atomic gr&phand succinctly
normal to this surface, the radial curvature, is negative while summarizes the type and number of the CPs formed on the
the two tangential curvatures can assume either positive orsurface of charge concentration of an atom in a molecule. This
negative values. If both of those curvatures are negative or graph provides the connectivity of the extremes of- %o in
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the corresponding surface of charge concentration of the VSCCa simple approach, we have used finite difference approxima-
distribution. In the C atom of the methane molecule (Figure tions to the partial derivatives for equally spaced base points.
1), for example, the VSCC exhibits four local charge concentra- In this method the derivative expressions are developed as a
tions or (3,—3) CPs, each one lying along the-& bonds, linear combination of its functional values. For example, the
linked by six (3,—1) CPs defining four faces with one (3,1) forward first derivative approximation of féx) function at the

CP in the center of each face. Thus, the atomic graph for thatX point usiong a fourth-order polynomial is evaluated by
atom is a regular tetrahedron with four triangular curved faces expanding the Taylor series about POiRIS(i+1, Xi+2, Xi+3, and
(Figure 1d). The values of thev2p at the (3,—3), (3, —1), Xi+4. Thus,

and (3,+1) are 1.190, 0.234, and0.119 au, and the distances , 1

from the nucleus are 0.982, 0.968, and 1.003 au, respectively.f (%) = (71h)[=3f(x) + 4f(x + 1) — f(x + 2)] +

As we can see, the charge distribution on the VSCC shows large (R2I3)f""(x) + (W4)F¥(x) (2)
changes while the distances from the nucleus only show slight

differences. In general, the surface of charge concentration iswhere h is the separation step between the points.f'lfs
almost spherical and the value of its radius is characteristic of truncated at the third derivative, the error can be assumed to be

the nature of the atom. The number, type, location, amdp of orderh? and is represented byjh?. Thereforef " is given
value of the critical points on that surface are a function of the as
linked atoms.

F(x) = (1M[=3f(x) + 4f(x + 1) — f(x + 2)] + O(n") (3)
Methodology

BUBBLE determines the critical points 6fv2p based on  This_expression can be simplified in the so called “stencil”
the Newtor-Raphson (NR) techniqu&. The NR algorithm form3’ considering only the significant features such as the

starts from a truncated Taylor expansion at a poirtro + h, direction, functional values, coefficients, and order of error.
aboutro of a multidimensional scalar function, Thus, the eq 2 in the stencil representation is expressed as,
—v20 = —v%p, + g'h + (Y)hTHh @) = e (@ D)~D) + o) @
where—v?p is the Laplacian of the electron density agndnd Such expressions include only the coefficients of the functional
H are its gradient and Hessian (matrix) at poigtrespectively. values present in the derivative formulas. The double circles
The best NR steh to get from the initiak o to the critical point indicate the position of the base point where the derivative is
ish = —H™1g. This correction is then used to obtain the new being evaluated, and the adjacent circles are separated by the
starting pointr new, and the process is iteratedwg—v?2p) = 0. interval h.
The NR algorithm requires the evaluation of the first, second, In this work, we have developed derivative expressions with
third, and fourth partial derivatives qf at arbitrary pointg. eighth-order error@(h8)) and backward, forward, and central

The BUBBLE program evaluates these derivatives analytically, interpolation. For example, using the stencil form, the ap-

using a Gaussian basis representation for the electronic densityproximation formulas developed for the case of central inter-
In the present work, we representedn to a homogeneous  polation, to determine the noncrossed first, second, third, and

grid of interval sizeh and use standard numerical methdde fourth derivatives ofo and the mixed partial derivative, such

calculate the partial derivatives @f which are then used in  asd*p/0°x9?y (due to the expression involving an error of€)(

the NR algorithm. Our methodology consists of performing it is just too large (an 11X 11 matrix), we have chosen one

all calculations on an uniform grid of the electronic density. In with an error ofO(h?% as illustrative), are
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Figure 2. Laplacian distribution for (a) carbon monoxide and (b) nitrogen monoxide. Only contoursvéy, that is, concentration of electronic
charge are plotted. The contour values in au are 0.1, 1.0, 2.0, 3.0, and 4.0. The outermost contour in each plot is 0.13)beti(&| points
or local charge concentrations are denoted by white spheres in the middle of the lobes. In panel b there is 2)s0R3,located at the leftmost
hexagon at 2, 4, and 9 o'clock, and in the rightmost hexagon at 3, 8, and 11 o’clock.

TABLE 1: Data for —v2p(r) at the (3, —3) Critical Points

wherew andp are the coordinates x, y, or z.
in the Atomic Valence Shell of the CO Molecule

The additional computational load of the proposed method

was found to be not greater than that of preparing a grid-based O atom
plot. However, this load can be significantly longer than that bonded nonbonded
required by the analytical approaches. Once that grid is built, step —v2p o —v%p o
one needs to calculate the derivativespait thesamenumber = o 27 007 0500 601 755 87 474641980 0.641 029 94
of arbitrary points'; in both methods. In order to to carry out 5 g4 447713187 069171016 474649354 0.641 01370
the topological analysis within an atomic VSCC, the BUBBLE 0.03 447710872 0.69172706 4.74642476 0.641 02802
program samples angular, azimuthal, and radially in a spherical 0.02 447710572 0.69172898 4.746 42027 0.641029 89
shell of radius varying fromR to R around the shell C atom
characteristic atomic radid® In general, around 1400 points nonbonded
(ni = 14 (angular pointsx 10 (@ points) x 10 (radius points))
are enough for an exhaustive topological analysis with this step —vp re
program. The analytical method calculates the values of the analytic 1.259 823 60 0.857 275 40
derivatives only at the; points using the basis functions while 0.04 1.259.824 59 085727478

. . . 0.03 1.25982372 0.857 27540
the numerical one instead has to use equations such-8s 5 0.02 1.259823 11 0.857 275 50

Such equations involveeveral points around each, and the

program has to interpolate when the points are not on the grid. in a N atom, wher& andR; can be 0.74 and 0.86, respectively,
The additional number of points required by the numerical the additional number of points needed are 34 411 wien
0.03 or 119 463 wheh = 0.02.

approach is given by {()z(R? — R3)/h%] — n. For example,
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TABLE 2: Data for —v?p(r) at the Critical Points in the
Atomic Valence Shell of the NO Molecule
N atom
(3,-3)
nonbonded, Yand V. Vbonded
step —v?p rn —v?p rn
analytic 2.51845889 0.74221185 1.869 79460 0.83531997
0.04 2.51845956 0.74220905 1.86980212 0.83532605
0.03 2.51845895 0.74221145 1.86979475 0.835 32406
0.02 2.51845891 0.74221183 1.86979450 0.83532089
(3.-1)
bonded, Eand 5 Enonbonded
step —v?p rn —v?p I'n
analytic 0.97669585 0.79468725 2.10013526 0.74318821
0.04 0.976696 11 0.794 68943 2.10014463 0.74325794
0.03 0.976 69587 0.794687 65 2.10013653 0.743 20009
0.02 0.97669584 0.79468729 2.10013476 0.74318921
3,+1)
Fi, R
step —v?p rn
analytic 0.100 042 38 0.862 741 66
0.04 0.100 041 80 0.862 739 37
0.03 0.100042 42 0.862 740 97
0.02 0.100 042 08 0.862 741 27
O atom
(3,-3)
nonbonded, Yand V» Vbonded
step —v?p ro —v?p o
analytic 5.097 11379 0.64276514 3.23625629 0.714 32303
0.04 5.097 11793 0.642776 66 3.23627498 0.714 37953
0.03 5.097 11397 0.64276525 3.23625800 0.714 32158
0.02 5.097 11346 0.642 76514 3.23625735 0.714 32301
(3.-1)
bonded, Eand E Enonbonded
step —v?p ro —v?p ro
analytic 2.751 22088 0.68939647 3.83919648 0.65047559
0.04 2.751 22226 0.68940126 3.83922963 0.650614 11
0.03 2.751 22098 0.689397 37 3.83920124 0.650497 38
0.02 2.751 22087 0.689 39647 3.83919699 0.65047547
(3,+1)
Fi, 2
step —v?p fo
analytic 1.595911 22 0.702 367 89
0.04 1.595 920 35 0.702 376 48
0.03 1.595911 12 0.702 369 24
0.02 1.595 911 08 0.702 367 88

Results and Discussion

The accuracy of the numerical evaluation of the topological
properties of the-v?p at the critical points with the modified
version of BUBBLE (called NUMLAP) was tested by compar-

Aray et al.

an important point because in most of the software currently
used, the density is stored only for plotting purposes, WitiT 3
significant figures (FN).

To study the effect of the size df and FN ofp on the
localization and the-v2p value at the critical points of the
Laplacian, we have determined the atomic graphs in CO and
NO molecules using different values bfand FN onp. The
results showed that a value bfbetween 0.04 and 0.02 with a
FN value between 7 and 12, guarantees a precision from 4 to 6
FN in the topological analysis efv2p. The distance from the
nucleus to the CPs and thev?p value at the CPs of the VSCC
of the C, O, and N atoms of the CO and NO molecules for
selectech values and FN equal to 12 are reported in Tables 1
and 2, respectively. Contour maps to= 0.02 are shown in
Figure 2. In CO, the carbon atom exhibits only one local charge
concentration or (3;-3) type CP, (Vnb), which is located in
the nonbonded region. A torus of charge depletion around the
internuclear axis with a ring of degenerated points is found in
the C VSCC. The O VSCC distribution shows two local charge
concentrations located along the-O bond direction. One is
facing the carbon atom (Vb), while the other is found in the
opposite side of the shell forming a nonbonded charge concen-
tration (Vnb). The ground state of NGr) has the open shell
configuration (b)2(20)4(30)4(40)3(50)4(1n)*(27) so that the
extra electron in thes2molecular orbital, that is mostly localized
in a plane, destroys the axial symmetry. In NO, both the N
and O VSCC show three local maxima, two nonbonded forming
an angle of 120with the bond direction and one located in the
bond region. Three (3;1) critical points lie on the same plane
of the (3,—3) forming two faces, one above and the other below
the plane, with two (3;+1) capping the atomic graph. Tables
1 and 2 confirm that a value &faround 0.03 and a FN of 12
in p produces a good precision (around 4dn the localization
of and in the topological properties at the critical points-af2p.

To consider a more complex case, we have studied the Cu
cluster. This a model of the (100) Cu surface with the
geometrical parameters of the bulk. Cu unit cell is a ctibic
fcc and belongs to thEm3m space group witta = 3.577 A.
Experimental studi¢3 have shown that the (100) Cu surface
reconstructs only to a small extent so that the geometry of the
first and second layer is essentially unchanged from the bulk
one. Previous resuftshave shown that the atomic graph for
the central Cu atom (modeling the Cu of the surface) has six
vertices, two along the axis perpendicular to the surface, one
above (L) and other below the surfaced)l-and four (L with
i =1, ..., 4) in the plane along the E€u bonds. These CPs
are linked by twelve edges, four between theand L, four
between Iy and L, and four linking the ks. Thus, the atomic
graph (Figure 3) of the Cu atoms is an octahedron with eight
faces joining the vertices, four above the surfaces and four below
it. The distance nucleus CPs and the2p value at these critical
points forh = 0.04 are collected in Table 3. This table shows
that, even in this complex case, a valuehafround 0.03 offers
a good compromise between computational cost and numerical
precision (from 10 to 10°%) in the determination of the atomic

ing the results of Gaussian 94 analytic KSOs using the original 9raphs and the calculation of thev?p value at its critical points.

BUBBLE program and the results using a numerical grig,of
calculated with the CUBEV program of the AIMPAC 94
package®l CUBEV builds a homogeneous grid pfof step
sizeh. The analytical KS orbitals were calculated using the
gradient-corrected Becke exchange potefittalgether with the
correlation potential of Lee, Yang, and PABLYP) and the
6-311G** Gaussian basis st. An error of order ofh® is

The previous results show that NUMLAP can be applied with
confidence to any numerical density regardless of the method
employed in the determination gf. As an example of its
capabilities, we will apply it to carry out the topological analysis
of the Laplacian of an electronic density determined using an
atomic numerical basis set. In this application, we will study
the atomic graph of the Cu and Fe atoms on the (100) Cu and

expected for the partial derivatives associated with the difference (001) Fe surfaces using the DM®&Lprogram b = 0.03 and
approximation used. However, the error also depends on theFN = 10) to generatep. The KS numerical orbitals were
number of figures used in the storage of the density. This is calculated with the BLYP functional and a double-numerical



Topology Analysis of Electronic Density Laplacian J. Phys. Chem. A, Vol. 101, No. 11, 1997183

Figure 4. Cus; cluster modeling a slab of two layers of the (100) Cu
surface. Gray and white spheres denote a Cu atom on the first and
second layer, respectively.

TABLE 4: Data for Critical Points of the Laplacian of p(r)
in the Central Top Cu Atom of the Cuy;

. critical points —v?p I'cu
Figure 3. Atomic graph for top atoms in Cu (100) surface. Large one (3,—3) above surface 63.5515 0.5325
gray and small white spheres denote the vertex-{@), CPs) and the one (3,—3) below surface 65.2372 0.5315
edges ((3,—1) CPs), respectively. The graph exposes a vertex four (3, —3) in surface 64.0215 0.5321
perpendicular to the top of the surface. four (3, —1) above surface 58.9510 0.5345
four (3,—1) in surface 61.9747 0.5330
TABLE 3: Data for Critical Points in the Laplacian of p(r) four (3, —1) below surface 59.4690 0.5341
in the Central Top Cu Atom on the Cu,3 Cluster four (3,+1) above surface 58.4289 0.5347
— - four (3,+1) below surface 58.821 0.5344
critical points —v?p Icu
one (3,—3) above surface 60.987 709 77 0.54355757 TABLE 5: Data for Critical Points of the Laplacian of p(r)
60.987 694 33 0.543 558 03 in the Central Top Fe Atom of the Fey; Cluster
one (3,—3) below surface 60.945 407 78 0.543 682 68 itial poi o2
60.945406 11  0.543 683 11 criial points ve fre
four (3, —3) in surface 61.252 429 88 0.543 458 69 four (3, —3) above surface 30.2286 0.6017
61.252 430 43 0.543 458 64 four (3, —3) below surface 30.0282 0.6285
four (3, —1) above surface 57.799 769 06 0.545 378 34 four (3, —1) above surface 28.9801 0.5988
57.799 770 55 0.543 378 33 four (3,—1) in surface 29.3331 0.6167
four (3,—1) in surface 58.603 741 29 0.544 958 70 four (3, —1) below surface 28.5089 0.6345
58.603 748 62 0.544 959 14 one (3,+1) e_lbove surface 26.4221 0.5950
four (3, —1) below surface 57.203 703 96 0.545 817 76 four (3,+1) in surface 25.2640 0.6210
57.203 703 65 0.545817 75 one (3,+1) below surface 25.1176 0.6555
four (3,+1) above surface 56.992 454 61 0.545 849 32 . .
56.992 455 56 0.545 849 32 Fe surface does not reconstruct, with a probable contraction of
four (3,+1) below surface 56.494 608 92 0.546 217 20 1.4% in the first layer. Thus, we have studied this surface using
56.494 605 22 0.546 217 17 cluster models containing from two to four layers of Fe atoms

parallel to the (001) plane with the same geometrical parameters
of the bulk. As in the Cu case, the Fe atomic graph exhibits
no dependence on the slab depth so a two layer model gives
basis set (DNP) including polarizatiénThese are examples the right graph. The data for the critical points-ef72p in the
of surfaces of fcc and bcc transition metals, respectively. VSCC of the top central Fe atom for ageluster model (Figure

In bulk*! Cu, each atom has 12 nearest neighbors at 2.56 A 5a) are reported in Table 5. The atomic graph so defined is a
that are reduced to eight at the top of the (100) surface. We cube (Figure 5b) with eight vertices, four above and four below
have studied this surface using cluster models containing fromthe surface, linked by 12 edges and six faces joining those
two to four layers of Cu atoms parallel to the (100) plane. We vertices. Thus, the atomic graph of the Fe atom shows, with
have determined, in each case, the critical points of the VSCC respect the Cu one, dramatic changes. The magnitude of the
of the surface top central atom. The Cu atomic graph is found —v?2p at the CPs changes from around 60 au in Cu, a nearly
to exhibit no dependence on the slab depth, and a modelfilled d-band case, to around 30 au in Fe, a nearly half-filled
containing two layers is sufficient to give the right graph, an d-band case. The atomic graph of the Cu atom exhibits a (3,
octahedron similar to that showed in Figure 3. For that reason, —3) CP type, a local maximum above the surface while Fe atom
we have reported the results obtained in a;@luster (Figure exposes a (3+1) CP, a local minimum in the VSCC.
4) modeling a periodic slab of two layers. The distance nucleus Therefore, the VSCC of the Cu and Fe atoms expose, above
CPs and the-v?p value at the critical points that generate the the surface, a “peak” and a “hole” of charge, respectively. These
regular octahedron previously mentioned and forming the atomic drastic variations in the Laplacian distribution are closely related
graph are collected in Table 4. to the opposite reactivity behavior shown by the Cu and Fe

The lattice of bulk! Fe is cubic bcc and is described by the surfaces toward a molecule such as CO. It is known that the
Im3m space group witla = 2.866 A. Each Fe atom has eight CO molecule does not reméfhon the Cu surface at room
first nearest neighbors at 2.48 A and six second nearesttemperature while it is dissociatively absorbeon Fe surface.
neighbors at 2.87 A. In the (001) surface top atom, these The perpendicular bonding of the CO molecule through the C
interactions are reduced to four with its first neighbors (located atom on the surface of Cu would require that a vertex on CO
in the second layer) and five with the second ones (four in the interacts with a vertex (a repulsive interaction) on the surface.
second layer and one in the third layer). Similarly, to the (100) The bonding on Fe corresponds to a vertex (adsorbéieg
Cu case, experimentat*® studies have shown that the (001) (surface) interaction, an attractive interaction.

aIn each line, the first and second rows give the BUBBLE and
NUMLAP results, respectively.
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Figure 5. (a) Fes cluster modeling a slab of two layers of the (001)

Fe surface. Gray and white spheres denote Fe atom on the first and

second layer, respectively. (b) Atomic graph for top atoms in Fe (001)
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top of the surface. The lines indicate the bond direction with the atoms

of the second layer of the surface.

Conclusions

A numerical method to perform the topological analysis of
the Laplacian ofp(r) regardless of how it was generated
(analytically, numerically, or even experimentally) was imple-
mented for the BUBBLE program. The method allows, for

example, the study by DFT by complex systems where the
electronic correlation is important, regardless the kind of basis

set used, and allows to predicts the chemical reactivity with
the atomic graphs of the topological theory of Bader. It would
be equally simple to adapt this method to other available
programs, such as the MORPHY program.
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